Pdcd2l Promotes Palmitate-Induced Pancreatic Beta-Cell Apoptosis as a FoxO1 Target Gene
نویسندگان
چکیده
Transcription factor FoxO1 is a key regulator of the insulin-signaling pathway, and is reported to play important roles in pancreatic β cell differentiation, proliferation, apoptosis and stress resistance. The multifunctional nature of FoxO1 is due to its regulation of various downstream targets. Previous studies in our lab identified potential FoxO1 target genes using the ChIP-DSL technique and one of those genes, Pdcd2l, was selected for further study. We found that the expression of Pdcd2l was increased with palmitate treatment; the luciferase assay result revealed that enhanced Pdcd2l promoter activity was responsible for the elevation of Pdcd2l expression. ChIP-PCR was performed to confirm the combination of FoxO1 to Pdcd2l promoter, result showing that FoxO1 could bind to Pdcd2l promoter and this binding was further enhanced after palmitate treatment. Overexpression of FoxO1 significantly induced Pdcd2l promoter activity, leading to increased mRNA level; consistently, interference of FoxO1 abolished the increment of Pdcd2l gene expression triggered by palmitate treatment. In addition, overexpression of Pdcd2l could further increase the percentage of apoptotic cells induced by palmitate incubation, whilst interference of Pdcd2l partially reversed the palmitate-induced apoptosis together with activated Caspase-3, indicating that the latter may play a part in this process. Therefore, in this study, we confirmed the binding of FoxO1 to the Pdcd2l gene promoter and studied the role of Pdcd2l in β cells for the first time. Our results suggested that FoxO1 may exert its activity partially through the regulation of Pdcd2l in palmitate-induced β cell apoptosis and could help to clarify the molecular mechanisms of β cell failure in type 2 diabetes.
منابع مشابه
Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis.
OBJECTIVE beta-Cells are particularly susceptible to fatty acid-induced apoptosis associated with decreased insulin receptor/phosphatidylinositol-3 kinase/Akt signaling and the activation of stress kinases. We examined the mechanism of fatty acid-induced apoptosis of mouse beta-cells especially as related to the role played by endoplasmic reticulum (ER) stress-induced Foxo1 activation and wheth...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملOverexpression of Kinase-Negative Protein Kinase Cδ in Pancreatic β-Cells Protects Mice From Diet-Induced Glucose Intolerance and β-Cell Dysfunction
OBJECTIVE In vitro models suggest that free fatty acid-induced apoptotic beta-cell death is mediated through protein kinase C (PKC)delta. To examine the role of PKCdelta signaling in vivo, transgenic mice overexpressing a kinase-negative PKCdelta (PKCdeltaKN) selectively in beta-cells were generated and analyzed for glucose homeostasis and beta-cell survival. RESEARCH DESIGN AND METHODS Mice ...
متن کاملEffect of 12 Weeks Aerobic Training on FOXO1 Gene Expression in Pancreatic Tissue of Type 2 Diabetes Wistar Rats
Objective: Exercise as a non-pharmacological treatment plays an important role in regulating and reducing the inflammatory cytokine associated with beta cell function. Genetics is one of the most important and effective factors in the incidence of diabetes, in most cases. The present study aims to explain the effect of 12 weeks aerobic training on FOXO1 expression in pancreatic tissue, insulin ...
متن کاملChronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis.
Chronic free fatty acid (FFA) exposure induces pancreatic beta-cell death, which may contribute to the development of type 2 diabetes. The mechanisms involved in FFA-induced cell death are not completely understood. Here we have investigated the effect of FFA on endoplasmic reticulum (ER) stress pathways in INS-1 pancreatic beta-cells. INS-1 cells exposed to palmitate for 16-24 h under serum-fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016